ABIC0
16 April 2014 编辑本文
summary
$$
min: \left(d-Ha\right)^T E^{-1} (d-Ha)
$$
Formula
forward modeling:
$$
\begin{aligned}
u_j\left(t\right) &= \sum_{q=1}^2 \int_s G_{qj}^0\left(t,\xi\right)*\dot{D}_q^0\left(t,\xi\right)~d\xi +e_{bj}\left( t \right) \\
\dot{D}_q^0\left(t,\xi\right) &\thickapprox \sum_{k=1}^K \sum_{l=1}^L a_{qkl}X_k\left(\xi\right)T_l\left(t-t_k\right)
\end{aligned}
$$
$$
\begin{aligned}
u_j(t)&=\sum_{q=1}^2 \int_s G_{qj}^0\left(t,\xi\right)*{\color{red}\dot{D}_q^0\left(t,\xi\right)} ~d\xi + e_{bj}\left( t \right) \\
&\thickapprox\sum_{q=1}^2 \int_s G_{qj}^0\left(t,\xi\right)*{\color{red}\sum_{k=1}^K \sum_{l=1}^L a_{qkl}X_k(\xi)T_l\left(t-t_k\right)} ~d\xi +e_{bj}(t)\\
&=\sum_{q=1}^2 \sum_{k=1}^K \sum_{l=1}^L a_{qkl} T_l \left(t-t_k\right) * {\color{red}\int_s X_k\left(\xi\right)G_{qj}^0\left(t,\xi\right) ~d\xi} +e_{bj}(t)\\
&=\sum_{q=1}^2 \sum_{k=1}^K \sum_{l=1}^L a_{qkl} T_l \left(t-t_k\right) * \left[{\color{red}\int_s X_k \left(\xi\right)G_{qj}\left(t,\xi\right) ~d\xi + \delta g_{qkj}(t)}\right] +e_{bj}(t) \\
&=\sum_{q=1}^2 \sum_{k=1}^K \left[ \sum_{l=1}^L T_l \left(t-t_k\right) * \int_s X_k \left(\xi\right)G_{qj}\left(t,\xi\right) ~d\xi ~ {\color{red}a_{qkl}}+ \sum_{l=1}^L a_{qkl} ~ T_l \left(t-t_k\right) * {\color{red}\delta g_{qkj}(t)}\right] +e_{bj}( t ) \\
&=\left[ \sum_{q=1}^2 \sum_{k=1}^K\sum_{l=1}^L\bbox[#eee]{ T_l (t-t_k) * \int_s X_k(\xi)G_{qj}(t,\xi) ~d\xi} ~ {\color{red}a_{qkl}} \right]
+\left[ \sum_{q=1}^2 \sum_{k=1}^K\bbox[#eee]{\sum_{l=1}^L a_{qkl} ~ T_l(t-t_k)}*{\color{red}\delta g_{qkj}(t)} +e_{bj}(t) \right] \\
&=\left[ \sum_{q=1}^2 \sum_{k=1}^K\sum_{l=1}^L\bbox[#eee]{\widetilde{H}_{qklj}(t)} ~ {\color{red}a_{qkl}} \right]
+\left[ \sum_{q=1}^2 \sum_{k=1}^K\bbox[#eee]{\widetilde{P}_{qk}\left(t,a_{qkl}\right)}*{\color{red}\delta g_{qkj}(t)} +e_{bj}(t) \right] \\
\textit{if:}\quad & \int_s X_k \left(\xi\right)G_{qj}(t,\xi) ~d\xi \thickapprox \int_s X_k (\xi)G_{qj}(t,\xi_k) ~d\xi =G_{qkj}(t)\cdot\Delta \xi_1 \Delta \xi_2 ;\quad \textit{GRN instead from 16 grids}\\
&=\left[ \sum_{q=1}^2 \sum_{k=1}^K\sum_{l=1}^L\bbox[#eee]{ T_l (t-t_k) * G_{qkj}(t)\cdot\Delta \xi_1 \Delta \xi_2 } ~ {\color{red}a_{qkl}} \right]
+\left[ \sum_{q=1}^2 \sum_{k=1}^K\bbox[#eee]{\sum_{l=1}^L a_{qkl} ~ T_l(t-t_k)}*{\color{red}\delta G_{qkj}(t)\cdot\Delta \xi_1 \Delta \xi_2 } +e_{bj}(t) \right] \\
\textit{if:}\quad & X_k \textit{boxcar instead of B-spine}\\
&=\left[ \sum_{q=1}^2 \sum_{k=1}^K\sum_{l=1}^L\bbox[#eee]{ T_l (t-t_k) * G_{qkj}(t)\cdot\Delta \xi_1 \Delta \xi_2 } ~ {\color{red}a_{qkl}} \right]
+\left[ \sum_{q=1}^2 \sum_{k=1}^K\bbox[#eee]{\sum_{l=1}^L a_{qkl} ~ T_l(t-t_k)}*{\color{red}\delta G_{qkj}(t)\cdot\Delta \xi_1 \Delta \xi_2 } +e_{bj}(t) \right] \\
d_j(t)&=B(t)*u_j(t) \qquad \textit{with: FIR implemented by convolution,} B(t) \\
&\thickapprox\left[ \sum_{q=1}^2 \sum_{k=1}^K\sum_{l=1}^L\bbox[#eee]{B(t)*\widetilde{H}_{qklj}(t)}~{\color{red}a_{qkl}} \right]
+\left[ \sum_{q=1}^2 \sum_{k=1}^K\bbox[#eee]{B(t)*\widetilde{P}_{qk}\left(t,a_{qkl}\right)}*{\color{red}\delta g_{qkj}(t)} +B(t)*{\color{red}e_{bj}(t)} \right] \\
&=\left[ \sum_{q=1}^2 \sum_{k=1}^K\sum_{l=1}^L\bbox[#eee]{H_{qklj}(t)} ~ {\color{red} a_{qkl}} \right]
+\left[ \sum_{q=1}^2 \sum_{k=1}^K\bbox[#eee]{P_{qk}\left(t,a_{qkl}\right)}*{\color{red}\delta g_{qkj}(t)}+B(t)*{\color{red}e_{bj}(t)}\right] \\
&=\left[ \sum_{q=1}^2 \sum_{k=1}^K\sum_{l=1}^L\bbox[#eee]{B(t)*T_l(t-t_k)*\int_s X_k(\xi)G_{qj}(t,\xi) ~d\xi } ~ {\color{red}a_{qkl}}\right]
+\left[ \sum_{q=1}^2 \sum_{k=1}^K\bbox[#eee]{\sum_{l=1}^L a_{qkl}~B(t)*T_l(t-t_k)}*{\color{red}\delta g_{qkj}(t)}+B(t)*{\color{red}e_{bj}(t)}\right] \\
&=\mathbb{B}~u_j(t) \qquad \textit{with: IIR implemented by difference equation,}\mathbb{B} \\
&\thickapprox\left[ \sum_{q=1}^2 \sum_{k=1}^K\sum_{l=1}^L\bbox[#eee]{\mathbb{B}~\left[T_l(t-t_k)*\int_s X_k(\xi)G_{qj}(t,\xi) ~d\xi\right] } ~ {\color{red}a_{qkl}}\right]
+\left[ \sum_{q=1}^2 \sum_{k=1}^K\bbox[#eee]{\sum_{l=1}^L a_{qkl}~T_l(t-t_k)}*{\color{red}\delta g_{qkj}(t)}+{\color{red}e_{bj}(t)}\right] \\
\end{aligned}
$$
$$
\begin{aligned}
24 \Delta s^4 M_{4,j+2}\left( s \right) &=
\begin{cases}
\frac{1}{8}\Delta s^3 &; s=s_j-1.5\Delta s &; \frac{\int (\cdots) ~ds}{\Delta s} = \frac{1}{4}\Delta s^3 \\
\frac{23}{8}\Delta s^3 &; s=s_j-0.5\Delta s &; \frac{\int (\cdots) ~ds}{\Delta s} = \frac{11}{4}\Delta s^3 \\
\frac{23}{8}\Delta s^3 &; s=s_j+0.5\Delta s &; \frac{\int (\cdots) ~ds}{\Delta s} = \frac{11}{4}\Delta s^3 \\
\frac{1}{8}\Delta s^3 &; s=s_j+1.5\Delta s &; \frac{\int (\cdots) ~ds}{\Delta s} = \frac{1}{4}\Delta s^3 \\
\end{cases} \\
\end{aligned}
$$
$$
\begin{matrix}
\frac{\Delta \xi_1 \Delta \xi_2 }{576}&\frac{1}{24}\Delta \xi_1&\frac{11}{24}\Delta \xi_1 &\frac{11}{24}\Delta \xi_1 &\frac{1}{24}\Delta \xi_1 \\
\frac{1 }{24}\Delta \xi_2 & 1 & 11 & 11 & 1\\
\frac{11}{24}\Delta \xi_2 & 11 & 121 & 121 & 11\\
\frac{11}{24}\Delta \xi_2 & 11 & 121 & 121 & 11\\
\frac{1 }{24}\Delta \xi_2 & 1 & 11 & 11 & 1\\
\end{matrix}
$$
$$
\begin{aligned}
e_j(\mathbf{a})&=\left[ \sum_{q=1}^2 \sum_{k=1}^K\bbox[#eee]{\widetilde{P}_{qk}\left(t,a_{qkl}\right)}*{\color{red}\delta g_{qkj}(t)} +e_{bj}(t) \right] \\
&=\left[ \sum_{q=1}^2 \sum_{k=1}^K\bbox[#eee]{\sum_{l=1}^L a_{qkl}~T_l(t-t_k)}*{\color{red}\delta g_{qkj}(t)}+{\color{red}e_{bj}(t)}\right]
\end{aligned}
$$
$$
P_{qk}(t,a_{qkl}) \ast \delta g_{qkj}(t) \iff
\begin{bmatrix}
p_1 & 0 & \ldots & 0 & 0 \\
p_2 & p_1 & \ldots & \vdots & \vdots \\
p_3 & p_2 & \ldots & 0 & 0 \\
\vdots & p_3 & \ldots & p_1 & 0 \\
p_{m-1} & \vdots & \ldots & p_2 & p_1 \\
p_m & p_{m-1} & \vdots & \vdots & p_2 \\
0 & p_m & \ldots & p_{m-2} & \vdots \\
0 & 0 & \ldots & p_{m-1} & p_{m-2} \\
\vdots & \vdots & \vdots & p_m & p_{m-1} \\
0 & 0 & 0 & \ldots & p_m
\end{bmatrix}
\begin{bmatrix}
g_1 \\
g_2 \\
g_3 \\
\vdots \\
\vdots \\
\vdots \\
g_{n_j}
\end{bmatrix}
$$
$$
\begin{aligned}
\mathbf{C}_{dj}(\sigma_g^2,\sigma_b^2,\mathbf{a})=& {\color{gray} \sigma_g^2\sum_{q=1}^{2}\sum_{k=1}^K S^2_{qkj}\mathbf{P}_{qkj}(\mathbf{a})\mathbf{P}_{qkj}^T(\mathbf{a}) + \sigma_b^2 O_{bj}^2\mathbf{B}_j\mathbf{B}_j^T } \\
\iff & \sigma_g^2\sum_{q=1}^{2}\sum_{k=1}^K\mathbf{P}_{qkj}(\mathbf{a})\mathbf{S}_{qkj}^2\mathbf{P}_{qkj}^T(\mathbf{a})+\sigma_b^2 \mathbf{O}_{bj}^2
\end{aligned}
$$
$$
\bbox[margin:0px -20px 0px 0px ; padding-bottom:5px]{
\begin{matrix}
~ & \mathbf{ \bbox[padding:23px; border:2px solid black] { S_\xi } } \\
& \mathbf{ \bbox[padding:23px; border:2px solid black] { S_\tau} }
\end{matrix}
}
\mathbf{\bbox[padding:25px 2px; border:2px solid black] {a}} =
\begin{matrix}
\mathbf{\bbox[padding:25px 2px; border:2px solid black] {0}} & \sim ~ \rho_\xi^2\\
\mathbf{\bbox[padding:25px 2px; border:2px solid black] {0}} & \sim ~ \rho_\tau^2
\end{matrix}
$$
$$
\begin{aligned}
\mathbf{d-Ha} & \sim (\mathbf{0}, \mathbf{C_d} ) \\
\mathbf{Sa} & \sim (\mathbf{0}, \mathbf{\rho^2})
\end{aligned}
$$
$$
\begin{aligned}
\color{red} P(\mathbf{d}|\mathbf{a};\sigma_g^2,\sigma_b^2)&=(2\pi)^{-N/2}\|\mathbf{C}_d(\sigma_g^2,\sigma_b^2,\mathbf{a})\|^{-1/2}\times exp \left[-\frac{1}{2}(\mathbf{d-Ha})^T\mathbf{C}_d^{-1}(\sigma_g^2,\sigma_b^2)(\mathbf{d-Ha})\right] \\
f(\mathbf{Sa})&= \cdots exp \left[ -\frac{1}{2} \mathbf{a}^T \begin{pmatrix} S_\xi^T & S_\tau^T \end{pmatrix} \begin{pmatrix} \rho_\xi^2 \mathbf{I_M} & 0 \\ 0 & \rho_\tau^2 \mathbf{I_M} \end{pmatrix}^{-1} \begin{pmatrix} S_\xi \\ S_\tau \end{pmatrix} \mathbf{a} \right] \\
&= \cdots exp \left[-\frac{1}{2} \mathbf{a}^T \left( \frac{S_\xi^TS_\xi+\chi^2S_\tau^TS_\tau}{\rho^2} \right) \mathbf{a}\right], \quad \chi^2=\frac{\rho_\xi^2}{\rho_\tau^2}\\
\color{red} P(\mathbf{a};\rho^2)&=(2\pi)^{-M/2}\begin{Vmatrix}\frac{G_\xi+\chi^2G_\tau}{\rho^2}\end{Vmatrix}^{1/2}\times exp \left[-\frac{1}{2} \mathbf{a}^T \left( \frac{G_\xi+\chi^2G_\tau}{\rho^2} \right) \mathbf{a}\right]
\end{aligned}
$$
$$
\begin{aligned}
\color{red}P&{\color{red}(\mathbf{a};\sigma_g^2,\sigma_b^2,\rho^2|\mathbf{d})}=cP(\mathbf{d}|\mathbf{a};\sigma_g^2,\sigma_b^2)P(\mathbf{a};\rho^2)\\
&=\bbox[#A9F5A9] {c(2\pi)^{-(N+M')/2}\|\mathbf{C}_d(\sigma_g^2,\sigma_b^2,\mathbf{a})\|^{-1/2} \begin{Vmatrix}\frac{G_\xi+\chi^2G_\tau}{\rho^2}\end{Vmatrix}^{1/2}} \\
&\quad \times exp \left[-\frac{1}{2}\left((\mathbf{d-Ha})^T\mathbf{C}_d^{-1}(\sigma_g^2,\sigma_b^2,\mathbf{a})(\mathbf{d-Ha}) + \mathbf{a}^T \left( \frac{G_\xi+\chi^2G_\tau}{\rho^2} \right) \mathbf{a} \right) \right] \\
&=\bbox[#A9F5A9]{c(2\pi\sigma_g^2)^{-(N+M')/2}\|\Sigma_d(\gamma^2,\mathbf{a})\|^{-1/2} \|\beta^2(G_\xi+\chi^2G_\tau)\|^{1/2} } \\
&\quad \times exp \left[-\frac{1}{2\sigma_g^2}\left(\bbox[#F5A9BC]{(\mathbf{d-Ha})^T\mathbf{\Sigma}_d^{-1}(\gamma^2,\mathbf{a})(\mathbf{d-Ha}) + \beta^2\mathbf{a}^T ( G_\xi+\chi^2G_\tau ) \mathbf{a} }\right) \right] \\
&=\bbox[#A9F5A9]{c(2\pi\sigma_g^2)^{-(N+M')/2}\|\Sigma_d(\gamma^2,\mathbf{a})\|^{-1/2} \|\beta^2(G_\xi+\chi^2G_\tau)\|^{1/2} } \times exp \left[-\frac{\mathbf{S(a)}}{2\sigma_g^2} \right] \\
&\qquad \qquad \gamma^2=\sigma_b^2/\sigma_g^2;\quad \beta^2=\sigma_g^2/\rho^2;\quad \sigma_g^2\Sigma_d=C_d \\
\end{aligned}
$$
As shown in $\Sigma_{d} (\gamma^{2},\mathbf{a})$, the data covariance matrix is a function of the model parameters $\mathbf{a}$, we can not straightforward calculate $\color{red} \partial S(\mathbf{a})/\partial \mathbf{a},\quad L,\quad ABIC$; however to cope with this problem, we introduce an initial model parameter vector $\mathbf{a}^i$
$$
\begin{aligned}
\bbox[5px, border:2px solid red] {\frac{\partial s(\mathbf{a})}{\partial \mathbf{a}}} &= \frac{\partial \left[(\mathbf{d-Ha})^T\mathbf{\Sigma}_d^{-1}(\gamma^2,{\color{red}\mathbf{a}^i})(\mathbf{d-Ha}) + \beta^2\mathbf{a}^T ( G_\xi+\chi^2G_\tau ) \mathbf{a} \right] }{ \partial \mathbf{a} } = \mathbf{0} \\
&\iff \mathbf{H}^T\Sigma_d^{-1}(\gamma^2,\mathbf{a}^i)(\mathbf{d-Ha^\star})-\beta^2(\mathbf{G_\xi+\chi^2G_\tau})\mathbf{a}^\star=0 \\
&\iff \bbox[#F5A9F2]{ \mathbf{a}^\star(\gamma^2,\beta^2;a^i)=\left[\mathbf{H}^T\Sigma_d^{-1}(\gamma^2,\mathbf{a}^i)\mathbf{H}+\beta^2(\mathbf{G_\xi+\chi^2G_\tau})\right]^{-1}\mathbf{H}^T\Sigma_d^{-1}(\gamma^2,\mathbf{a}^i)\mathbf{d} }
\end{aligned}
$$
here in order to apply gaussian integration. rewrite $S(\mathbf{a})$ with $a^\star$:
$$
\begin{aligned}
S(\mathbf{a})&=(\mathbf{d-Ha})^T\mathbf{\Sigma}_d^{-1}(\gamma^2,{\color{red}\mathbf{a}^i})(\mathbf{d-Ha}) + \beta^2\mathbf{a}^T ( G_\xi+\chi^2G_\tau ) \mathbf{a} \\
S(\mathbf{a}^\star)&=(\mathbf{d-Ha^\star})^T\mathbf{\Sigma}_d^{-1}(\gamma^2,{\color{red}\mathbf{a}^i})(\mathbf{d-Ha^\star}) + \beta^2\mathbf{a^\star}^T ( G_\xi+\chi^2G_\tau ) \mathbf{a^\star} \\
S(\mathbf{a}) & \textit{taylor expansion at :}\; a^\star ;\mathbb{J}\textit{:jacobian matrix;} \mathbb{H}\textit{: Hessian matrix}\\
S(\mathbf{a})&\approx S(\mathbf{a}^\star) + \mathbb{J}(\mathbf{a^\star}) (\mathbf{a-a^\star}) +\frac{1}{2} (\mathbf{a-a^\star})^\mathrm{T} \mathbb{H}(\mathbf{a^\star}) (\mathbf{a-a^\star}); \quad \mathbb{J}(a)|_{a=a^\star}=0 \\
&=\bbox[5px, border:2px solid red]{S(\mathbf{a}^\star)+(\mathbf{a-a^\star})^T \left[ H^T\Sigma_d^{-1}(\gamma^2,{\color{red}\mathbf{a}^i})H+\beta^2(G_\xi+\chi^2G_\tau) \right](\mathbf{a-a^\star}) } \\
~\\
\end{aligned}
$$
$$
\begin{aligned}
L&(\sigma_g^2,\gamma^2,\beta^2;{\color{red}\mathbf{a}^i})=\int P(d|a)P(a)~da \\
&=\bbox[#A9F5A9]{(2\pi\sigma_g^2)^{-(N+M')/2}\|\Sigma_d(\gamma^2,{\color{red}\mathbf{a}^i})\|^{-1/2} \|\beta^2(G_\xi+\chi^2G_\tau)\|^{1/2}} \times exp \left[-\frac{1}{2\sigma_g^2} \mathbf{S(a^\star)} \right] \\
&\quad\times \int -\frac{1}{2\sigma_g^2} \left[(\mathbf{a-a^\star})^T \left[ H^T\Sigma_d^{-1}(\gamma^2,{\color{red}\mathbf{a}^i})H+\beta^2(G_\xi+\chi^2G_\tau) \right](\mathbf{a-a^\star})\right] ~d(\mathbf{a-a^\star})\\
&=\bbox[#A9F5A9]{(2\pi\sigma_g^2)^{-(N+M')/2}\|\Sigma_d(\gamma^2,{\color{red}\mathbf{a}^i})\|^{-1/2} \|\beta^2(G_\xi+\chi^2G_\tau)\|^{1/2}} \\
&\quad\times (2\pi\sigma_g^2)^{M''/2} \begin{Vmatrix} H^T\Sigma_d^{-1}(\gamma^2,{\color{red}\mathbf{a}^i})H+\beta^2(G_\xi+\chi^2G_\tau) \end{Vmatrix}^{-1/2} \times exp \left[-\frac{1}{2\sigma_g^2} \mathbf{S(a^\star)} \right] \\
&=(2\pi {\color{#0000FF}\sigma_g^2})^{-(N+M'-M'')/2} \times exp \left[-\frac{1}{2{\color{#0000FF}\sigma_g^2}} \mathbf{S(a^\star)} \right] \times \|\sim\|^{-1/2}~\|\sim\|^{1/2}~\|\sim\|^{-1/2}
\end{aligned}
$$
$$
\begin{aligned}
\bbox[5px, border:2px solid red] {\frac{\partial L(\sigma_g^2,\gamma^2,\beta^2;{\color{red}\mathbf{a}^i})}{\partial \sigma_g^2 }} = 0 & \iff \frac{\partial (2\pi {\color{#0000FF}\sigma_g^2})^{-(N+M'-M'')/2} \times exp \left[-\frac{1}{2{\color{#0000FF}\sigma_g^2}} \mathbf{S(a^\star)} \right] }{\partial \sigma_g^2} \\
& \Rightarrow \sigma_g^2=\frac{s(\mathbf{a^\star})}{N+M'-M''}\\
\end{aligned}
$$
$$
\begin{aligned}
ABIC({\color{red}\gamma^2},{\color{red}\beta^2};&\sigma_g^2,\mathbf{a}^i)=-2log\left[ L({\color{red}\gamma^2},{\color{red}\beta^2};\sigma_g^2,\mathbf{a}^i) \right]\\
=& (N+M'-M'')log(S(\mathbf{a}^\star)) \\
& + log(\begin{Vmatrix} \Sigma_d( {\color{red} \gamma^2},{\mathbf{a}^i}) \end{Vmatrix}) \\
& - log(\begin{Vmatrix} {\color{red}\beta^2}(G_\xi+\chi^2G_\tau) \end{Vmatrix}) \\
& + log(\begin{Vmatrix} H^T\Sigma_d^{-1}({\color{red}\gamma^2},{\mathbf{a}^i})H+{\color{red}\beta^2}(G_\xi+\chi^2G_\tau) \end{Vmatrix}) + C' \\
~\\
with&:\\
~\\
S(\mathbf{a}^\star({\color{red}\gamma^2},{\color{red}\beta^2}))&=(\mathbf{d-Ha^\star})^T\mathbf{\Sigma}_d^{-1}({\color{red}\gamma^2},{\mathbf{a}^i})(\mathbf{d-Ha^\star}) + {\color{red}\beta^2}\mathbf{a^\star}^T ( G_\xi+\chi^2G_\tau ) \mathbf{a^\star}\\
\mathbf{a}^\star({\color{red}\gamma^2},{\color{red}\beta^2};a^i)&=\left[\mathbf{H}^T\Sigma_d^{-1}({\color{red}\gamma^2},\mathbf{a}^i)\mathbf{H}+{\color{red}\beta^2}(\mathbf{G_\xi+\chi^2G_\tau})\right]^{-1}\mathbf{H}^T\Sigma_d^{-1}({\color{red}\gamma^2},\mathbf{a}^i)\mathbf{d} \\
~\\
\textit{covariance }&\textit{matrix for the model parameters:} \\
C_a({\color{red}\gamma^2},{\color{red}\beta^2}) &=\sigma_g^2\left[\mathbf{H}^T\Sigma_d^{-1}({\color{red}\gamma^2},\mathbf{a}^i)\mathbf{H}+{\color{red}\beta^2}(\mathbf{G_\xi+\chi^2G_\tau})\right]^{-1} \\
\textit{iteratively }&\textit{update initial model:} \\
a_n^i&=a_{n-1}^i+ w(a_{n-1}^\star - a_{n-1}^i) (0 \lt w \lt 1) \\
&~\\
\textit{solution for}&~\gamma^2,\beta^2: \textit{object function:}\,\mathbf{ABIC}(\gamma^2,\beta^2),\textit{or}~\mathbf{S}(\mathbf{a}(\gamma^2,\beta^2))\\
&~\textit{grid_search} \\
&~\textit{neighborhood method} \\
&~\textit{Levenberg-Marquardt}\\
Min:~ABIC & \iff Max: \int P(d|a)P(a)~da \quad \textit{;entropy maximization principle} \\
Min:\quad S(a) & \iff Max: \quad P(d|a)P(a) \quad\quad \textit{;} Max~P(a|d)
&~\\
&~\\
\widehat{\mathbf{a}}^{~\star}({\color{red}\sigma_b^2},{\color{red}\rho^2};a^i)&=\left[\mathbf{H}^T C_d^{-1}({\color{red}\sigma_b^2},\mathbf{a}^i) \mathbf{H}+{(\mathbf{G_\xi+\chi^2G_\tau})}/{\color{red}\rho^2}\right]^{-1}\mathbf{H}^T C_d^{-1}({\color{red}\sigma_b^2},\mathbf{a}^i) \mathbf{d} \\
\widehat{C}_a({\color{red} \sigma_b^2},{\color{red} \rho^2}) &=\left[\mathbf{H}^T~C_d^{-1}({\color{red}\sigma_b^2},\mathbf{a}^i)\mathbf{H}+{(\mathbf{G_\xi+\chi^2G_\tau})}/{\color{red}\rho^2}\right]^{-1} \\
\widehat{S}(\mathbf{a}^\star({\color{red}\sigma_b^2},{\color{red}\rho^2}))&=(\mathbf{d-Ha^\star})^T C_d^{-1}({\color{red}\sigma_b^2},{\mathbf{a}^i})(\mathbf{d-Ha^\star}) + \mathbf{a^\star}^T ( G_\xi+\chi^2G_\tau )/{\color{red}\rho^2} \mathbf{a^\star}\\
\widehat{ABIC}({\color{red}\sigma_b^2},{\color{red}\rho^2};&\sigma_g^2,\mathbf{a}^i)\\
= &log(\begin{Vmatrix} C_d( {\color{red} \sigma_b^2},{\mathbf{a}^i}) \end{Vmatrix}) \\
- &log(\begin{Vmatrix} (G_\xi+\chi^2G_\tau)/{\color{red}\rho^2} \end{Vmatrix}) \\
+ &log(\begin{Vmatrix} H^T C_d^{-1}({\color{red}\sigma_b^2},{\mathbf{a}^i})H+(G_\xi+\chi^2G_\tau)/{\color{red}\rho^2} \end{Vmatrix}) + C \\
~\\
\end{aligned}
$$
$$
\begin{aligned}
\sigma_g^2&\left[ S_\xi^T (\rho^2 \Sigma_\xi)^{-1} S_\xi + S_\tau^T (\rho^2 \Sigma_\tau)^{-1} S_\tau \right] \\
\frac{\sigma_g^2}{\rho^2} & \left [ \frac{S_{\xi}^T S_\xi }{\sigma_\xi^2} + \frac{S_{\tau}^T S_\tau}{\sigma_\tau^2} \right] \\
\sigma_\xi^2 &\approx max \left[ (S_\xi\left( H^T C_d^{-1} H \right)^{-1}S_\xi^T \right ]_{ii} \\
\sigma_\tau^2 &\approx max \left[ (S_\tau\left( H^T C_d^{-1} H \right)^{-1}S_\tau^T \right ]_{ii} \\
\end{aligned}
$$
$$
\begin{aligned}
\begin{pmatrix} \mathbf{H} \\ \mathbf{S} \end{pmatrix} ~ \mathbf{a} &= \begin{pmatrix} \mathbf{d} & \sim & \Sigma_d \\ \mathbf{0} & \sim & \Sigma_s \end{pmatrix} \\
\begin{matrix}\begin{pmatrix} \mathbf{H}^T & \mathbf{S}^T \end{pmatrix} \\ ~ \end{matrix}
\begin{pmatrix} \Sigma_d^{-1} & ~ \\ ~ & \Sigma_s^{-1}\end{pmatrix}
\begin{pmatrix} \bbox[padding-bottom:10px]{\mathbf{H}} \\ \mathbf{S} \end{pmatrix} ~ \mathbf{a} &=
\begin{matrix}\begin{pmatrix} \mathbf{H}^T & \mathbf{S}^T \end{pmatrix} \\ ~ \end{matrix}
\begin{pmatrix} \Sigma_d^{-1} & ~ \\ ~ & \Sigma_s^{-1}\end{pmatrix}
\begin{pmatrix} \bbox[padding-bottom:10px]{\mathbf{d}} \\ \mathbf{0} \end{pmatrix} \\
\end{aligned}
$$
$$
\begin{aligned}
~ & \left(\mathbf{H}^T\Sigma_d^{-1}\mathbf{H}+\mathbf{S}^T\Sigma_s^{-1}\mathbf{S}\right)\mathbf{a}=\left(\mathbf{H}^T\Sigma_d^{-1}\mathbf{d}+{\color{red} \mathbf{S}^T\Sigma_s^{-1}\mathbf{0}} \right)\quad\cdots\quad(1)\\
\mathbf{a}=&\left(\mathbf{H}^T\Sigma_d^{-1}\mathbf{H}+\mathbf{S}^T\Sigma_s^{-1}\mathbf{S}\right)^{-1} \left(\mathbf{H}^T\Sigma_d^{-1}\mathbf{d}+{\color{red} \mathbf{S}^T\Sigma_s^{-1}\mathbf{0}}\right)\quad\cdots\quad(2)\\
\therefore \quad & ~\\
\mathbf{a^\star} = \mathbf{E}(\mathbf{a})&=\bbox[#A9F5A9]{\left(\mathbf{H}^T\Sigma_d^{-1}\mathbf{H}+\mathbf{S}^T\Sigma_s^{-1}\mathbf{S}\right)^{-1} \left(\mathbf{H}^T\Sigma_d^{-1}\mathbf{d}\right)}\\
&=\left(\mathbf{H}^T(\sigma_g^2\widetilde{\Sigma}_g+\sigma_o^2\widetilde{\Sigma}_o)^{-1}\mathbf{H}+\mathbf{S}^T(\sigma_s^2\widetilde{\Sigma}_s)^{-1}\mathbf{S}\right)^{-1} \left(\mathbf{H}^T(\sigma_g^2\widetilde{\Sigma}_g+\sigma_o^2\widetilde{\Sigma}_o)^{-1}\mathbf{d}\right)\\
&=\left(\mathbf{H}^T(\widetilde{\Sigma}_g+\frac{\sigma_o^2}{\sigma_g^2}\widetilde{\Sigma}_o)^{-1}\mathbf{H}+\mathbf{S}^T(\frac{\sigma_s^2}{\sigma_g^2}\widetilde{\Sigma}_s)^{-1}\mathbf{S}\right)^{-1} \left(\mathbf{H}^T(\widetilde{\Sigma}_g+\frac{\sigma_o^2}{\sigma_g^2}\widetilde{\Sigma}_o)^{-1}\mathbf{d}\right)\\
&=\left(\mathbf{H}^T(\widetilde{\Sigma}_g+\frac{\sigma_o^2}{\sigma_g^2}\widetilde{\Sigma}_o)^{-1}\mathbf{H}+\frac{\sigma_g^2}{\sigma_s^2}\mathbf{S}^T(\widetilde{\Sigma}_s)^{-1}\mathbf{S}\right)^{-1} \left(\mathbf{H}^T(\widetilde{\Sigma}_g+\frac{\sigma_o^2}{\sigma_g^2}\widetilde{\Sigma}_o)^{-1}\mathbf{d}\right)\\
&=\left(\mathbf{H}^T(\widetilde{\Sigma}_g+{\gamma^2}\widetilde{\Sigma}_o)^{-1}\mathbf{H}+{\beta^2}\mathbf{S}^T(\widetilde{\Sigma}_s)^{-1}\mathbf{S}\right)^{-1} \left(\mathbf{H}^T(\widetilde{\Sigma}_g+{\gamma^2}\widetilde{\Sigma}_o)^{-1}\mathbf{d}\right)\\
\end{aligned}
$$
$$
\begin{aligned}
\Sigma_h & \overset{1}{\iff} \Sigma_d \overset{2}{\iff} \Sigma_a ~~ {\color{red} ?! }\\
1:& \textit{suppose Uncertain Green Function }~~\Sigma_H \\
2:& \textit{suppose Uncertain model. contribute} ~~ \Sigma_H ~~ \textit{to} ~~ \Sigma_a
\end{aligned}
$$
$$
\begin{aligned}
\textit{by} (1) \qquad &~\\
~ & \left(\mathbf{H}^T\Sigma_d^{-1}\mathbf{H}+\mathbf{S}^T\Sigma_s^{-1}\mathbf{S}\right) \mathbf{\Sigma_a}\left(\mathbf{H}^T\Sigma_d^{-1}\mathbf{H}+\mathbf{S}^T\Sigma_s^{-1}\mathbf{S}\right)^T \\
&= var(\mathbf{H}^T\Sigma_d^{-1}\mathbf{d})+var(\mathbf{S}^T\Sigma_s^{-1}\mathbf{0}) \quad;\quad cov(\mathbf{d,0})=0, cov(\mathbf{0,d})=0\\
&=\mathbf{H}^T\Sigma_d^{-1}\Sigma_d\Sigma_d^{-1}\mathbf{H}+ \mathbf{S}^T\Sigma_s^{-1}\Sigma_s\Sigma_s^{-1}\mathbf{S} \quad \textit{; Symmetric},cov(\mathbf{0},\mathbf{0})=\Sigma_s\\
&=\left(\mathbf{H}^T\Sigma_d^{-1}\mathbf{H}+\mathbf{S}^T\Sigma_s^{-1}\mathbf{S}\right)\\
\end{aligned}
$$
$$
\begin{aligned}
\Sigma_a&=\bbox[#A9F5A9]{\left(\mathbf{H}^T\Sigma_d^{-1}\mathbf{H}+\mathbf{S}^T\Sigma_s^{-1}\mathbf{S}\right)^{-1}}\\
&= \left(\mathbf{H}^T(\sigma_g^2\widetilde{\Sigma}_g+\sigma_o^2\widetilde{\Sigma}_o)^{-1}\mathbf{H}+\mathbf{S}^T(\sigma_s^2\widetilde{\Sigma}_s)^{-1}\mathbf{S}\right)^{-1} \\
&= \sigma_g^2\left(\mathbf{H}^T(\widetilde{\Sigma}_g+\frac{\sigma_o^2}{\sigma_g^2}\widetilde{\Sigma}_o)^{-1}\mathbf{H}+\mathbf{S}^T(\frac{\sigma_s^2}{\sigma_g^2}\widetilde{\Sigma}_s)^{-1}\mathbf{S}\right)^{-1} \\
&= \sigma_g^2\left(\mathbf{H}^T(\widetilde{\Sigma}_g+\frac{\sigma_o^2}{\sigma_g^2}\widetilde{\Sigma}_o)^{-1}\mathbf{H}+\frac{\sigma_g^2}{\sigma_s^2}\mathbf{S}^T(\widetilde{\Sigma}_s)^{-1}\mathbf{S}\right)^{-1} \\
\end{aligned}
$$
$$
\begin{aligned}
& \textit{Object(Misfit) function }\\
\mathbb{S}(\mathbf{a})&=(\mathbf{d-Ha})^T\Sigma_d^{-1}(\mathbf{d-Ha})+(\mathbf{0-Sa})^T\Sigma_s^{-1}(\mathbf{0-Sa}) \\
&=\bbox[#A9F5A9]{(\mathbf{d-Ha})^T\Sigma_d^{-1}(\mathbf{d-Ha})+\mathbf{a}^T\mathbf{S}^T\Sigma_s^{-1}\mathbf{Sa}}\\
& \approx S(\mathbf{a}^\star) + \mathbb{J}(\mathbf{a^\star}) (\mathbf{a-a^\star}) +\frac{1}{2} (\mathbf{a-a^\star})^\mathrm{T} \mathbb{H}(\mathbf{a^\star}) (\mathbf{a-a^\star}); \quad \mathbb{J}(a)|_{a=a^\star}=0 \\
&=S(\mathbf{a}^\star)+(\mathbf{a-a^\star})^T \left[ \mathbf{H}^T\Sigma_d^{-1}\mathbf{H}+\mathbf{S}^T\Sigma_s^{-1}\mathbf{S} \right](\mathbf{a-a^\star}) \\
&~\\
&~\\
&=(\mathbf{d-Ha})^T(\sigma_g^2\widetilde{\Sigma}_g+\sigma_o^2\widetilde{\Sigma}_o)^{-1}(\mathbf{d-Ha})+\mathbf{a}^T\mathbf{S}^T(\sigma_s^2\widetilde{\Sigma}_s)^{-1}\mathbf{Sa}\\
&~\\
&=\frac{(\mathbf{d-Ha})^T(\widetilde{\Sigma}_g+\frac{\sigma_o^2}{\sigma_g^2}\widetilde{\Sigma}_o)^{-1}(\mathbf{d-Ha})+\mathbf{a}^T\mathbf{S}^T(\frac{\sigma_s^2}{\sigma_g^2}\widetilde{\Sigma}_s)^{-1}\mathbf{Sa}}{\sigma_g^2}\\
&=\frac{\widetilde{\mathbb{S}}(\mathbf{a})}{\sigma_g^2} \quad \widetilde{\Sigma}_d=\widetilde{\Sigma}_g+\frac{\sigma_o^2}{\sigma_g^2}\widetilde{\Sigma}_o\\
ABIC&=log\left(\begin{Vmatrix}\mathbf{H}^T(\widetilde{\Sigma}_g+\frac{\sigma_o^2}{\sigma_g^2}\widetilde{\Sigma}_o)^{-1}\mathbf{H}+\mathbf{S}^T(\frac{\sigma_s^2}{\sigma_g^2}\widetilde{\Sigma}_s)^{-1}\mathbf{S}\end{Vmatrix}\right) \\
&-\,log\left(\begin{Vmatrix} (\widetilde{\Sigma}_g+\frac{\sigma_o^2}{\sigma_g^2}\widetilde{\Sigma}_o)^{-1} \end{Vmatrix}\right) \\
&-\,log\left(\begin{Vmatrix} \mathbf{S}^T(\frac{\sigma_s^2}{\sigma_g^2}\widetilde{\Sigma}_s)^{-1}\mathbf{S} \end{Vmatrix}\right) \\
&+\,(N+M'-M'') \cdot log\left(\widetilde{\mathbb{S}}(\mathbf{a})\right) + C' \\
or&\\
&=log\left(\begin{Vmatrix}\mathbf{H}^T(\Sigma_d)^{-1}\mathbf{H}+\mathbf{S}^T(\Sigma_s)^{-1}\mathbf{S}\end{Vmatrix}\right) \\
&-\,log\left(\begin{Vmatrix} (\Sigma_d)^{-1} \end{Vmatrix}\right) \\
&-\,log\left(\begin{Vmatrix} \mathbf{S}^T(\Sigma_s)^{-1}\mathbf{S} \end{Vmatrix}\right) + C \\
&~\\
\end{aligned}
$$
$$
\begin{aligned}
u(t)&=\sum_{n=1}^{N}\sum_{q=1}^{Q}\sum_{l=1}^{L} \sum_{k=1}^{K} \mathbf{G}(\overset{nqlk}{\xi},t) \cdot m_{nqlk}*T_l(t-\overset{nq}{t_k}) \\
&+\sum_{n=1}^{N}\sum_{q=1}^{Q}\sum_{k=1}^{K}~\sum_{l=1}^{L}\Delta \mathbf{G}(\overset{nqkl}{\xi},t) \cdot m_{nqlk}*T_l(t-\overset{nq}{t_k})+e(t)\\
u(t)&=\sum_{n=1}^{N}\sum_{q=1}^{Q}\sum_{l=1}^{L} \sum_{k=1}^{K} \mathbf{G}(\overset{nqlk}{\xi},t) \cdot \overset{n}{m_0} \cdot a_{nqlk}*T_l(t-\overset{nq}{t_k}) \\
&+\sum_{n=1}^{N}\sum_{q=1}^{Q}\sum_{k=1}^{K}~\sum_{l=1}^{L}\Delta \mathbf{G}(\overset{nqkl}{\xi},t) \cdot \overset{n}{m_0} \cdot a_{nqlk}*T_l(t-\overset{nq}{t_k})+e(t)\\
u(t)&=\sum_{n=1}^{N}\sum_{q=1}^{Q}\sum_{l=1}^{L} \sum_{k=1}^{K} \mathbf{G}(\overset{nqlk}{\xi},t) \cdot \mu \cdot a_{nqlk}*T_l(t-\overset{nq}{t_k}) \\
&+\sum_{n=1}^{N}\sum_{q=1}^{Q}\sum_{k=1}^{K}~\sum_{l=1}^{L}\Delta \mathbf{G}(\overset{nqkl}{\xi},t) \cdot \mu \cdot a_{nqlk}*T_l(t-\overset{nq}{t_k})+e(t)\\
\color{red} u(t)&=\sum_{n=1}^{N}\sum_{q=1}^{Q}\sum_{l=1}^{L} \sum_{k=1}^{K} \mathbf{G}(\overset{nqlk}{\xi},t) \cdot \mu \cdot a_{nqlk} \cdot \Delta \xi_1 \Delta \xi_2 *T_l(t-\overset{nq}{t_k}) \\
&+\sum_{n=1}^{N}\sum_{q=1}^{Q}\sum_{k=1}^{K}~\sum_{l=1}^{L}\Delta \mathbf{G}(\overset{nqkl}{\xi},t) \cdot \mu \cdot a_{nqlk} \cdot \Delta \xi_1 \Delta \xi_2 *T_l(t-\overset{nq}{t_k})+e(t)\\
\end{aligned}
$$
prior constraints
$$
\begin{aligned}
\nabla^2 \dot{D}(t,\xi)+e_{\xi} =0 \iff & \mathbf{S_{\xi }a+e_{\xi }=0} \iff \mathbf{G_{\xi }=S_{\xi }^TS_{\xi }} \\
\frac{\partial^2}{\partial t^2}\dot{D}(t,\xi)+e_{\tau} =0 \iff & \mathbf{S_{\tau}a+e_{\tau}=0} \iff \mathbf{G_{\tau}=S_{\tau}^TS_{\tau}} \\
\end{aligned}
$$
$$
\begin{matrix}
\frac{\partial^2 (\cdots) }{\partial x^2 } & \iff & \frac{1}{c^2} \frac{\partial^2 (\cdots) }{ \partial t^2 } \\
\mathbf{S_{\xi }a} ~ \Rightarrow ~ \mathbf{a^T}\mathbf{G_{\xi }}\mathbf{a} & \iff & \frac{1}{c^2} \mathbf{S_{\tau}a} ~ \Rightarrow ~ \mathbf{a^T}\mathbf{G_{\tau}}\mathbf{a} \\
-\mathbf{a^T} \left( \frac{1}{2\rho_{\xi}^2}\mathbf{G_{\xi}}+\frac{1}{2\rho_{\tau}^2}\mathbf{G_{\tau}} \right) \mathbf{a} & \iff & -\frac{1}{2}~\mathbf{a^T} ~\frac{ \mathbf{G_{\xi}} + (\rho_{\xi}^2/\rho_{\tau}^2) \mathbf{G_{\tau}} }{\rho_{\xi}^2} ~ \mathbf{a} \\
~ & \rho_{\xi}^2/\rho_{\tau}^2 = 1/c^4 \quad \color{red} & \color{red} ?
\end{matrix}
$$
dimensional analysis
$$
\begin{aligned}
\dot{D}_q^0(t,\xi) \thickapprox & \sum_{k=1}^K \sum_{l=1}^L a_{qkl}X_k(\xi)T_l(t-t_k) \\
u_j(t)= &\sum_{q=1}^2 \int_s G_{qj} (t,\xi)* \dot{D}_q(t,\xi)~d\xi ~ ; \\
\iff & \sum_{q=1}^2 \int_s \mathbb{G}_{qj}^{FK}(t,\xi)* \dot{\mathbb{M}}_q(t,\xi)~d\xi ; \quad \textit{Zhu's FK GRN is referred to Moment.} \\
\quad & \int_\Sigma \int_t ~ \dot{\mathbb{M}}(t,\xi)~dt~d\xi=M_0 ;\quad \dot{\mathbb{M}} \iff \dot{D} \\
\textit{ let: } & G=\mu \mathbb{G}^{FK} \textit{ then: } \\
\iff & \sum_{q=1}^2 \int_s G_{qj}(t,\xi)* \dot{D}_q(t,\xi)~d\xi ; \\
\quad & \int_\Sigma \int_t ~ \dot{D}(t,\xi)~dt~d\xi=M_0/\mu; \quad \dot{D} \iff \dot{D} \\
~&~\\
\end{aligned}
$$
$$
\begin{aligned}
& \dot{D}_q(t,\xi) ~ \textit{ interpolated from } ~ a_{qkl} ~ \textit{, theoretically } \dot{D}_q(t,\xi) \textit{ and } ~ a_{qkl} ~ \textit{ should have} \\
& \textit{same dimensions, so}~ X_k(\xi)\;,\; T_l(t-t_k) \textit{should be dimensionless,} \\
& \textit{ then, we can normalize the base functions as follows: } \\
\end{aligned}
$$
$$
\begin{aligned}
\int_\Sigma X_k\left(\mathbf{\xi}\right) ~d\mathbf{\xi} = \Delta \xi_1 & \Delta \xi_2 \quad ; \quad \int_t ~ T_l\left(t-t_k\right) ~ ~dt = \Delta t \\
\int_\Sigma \int_t ~ \dot{D}_q^0(t,\xi) ~dt~d\xi &\thickapprox \int_\Sigma \int_t ~ \sum_{k=1}^K \sum_{l=1}^L a_{qkl}X_k(\xi)T_l(t-t_k) ~dt~d\xi \\
&=\sum_{k=1}^K \sum_{l=1}^L a_{qkl} \Delta \xi_1 \Delta \xi_2 \Delta t \iff a_{qkl} ~ \sim \dot{D} \\
\textit{if normalize the base functions as } & \textit{follows:} \\
\int_\Sigma X_k\left(\mathbf{\xi}\right) ~d\mathbf{\xi} = \Delta \xi_1 & \Delta \xi_2 \quad ; \quad \int_t ~ T_l\left(t-t_k\right) ~ ~dt = 1 \\
\int_\Sigma \int_t ~ \dot{D}_q^0(t,\xi) ~dt~d\xi &\thickapprox \int_\Sigma \int_t ~ \sum_{k=1}^K \sum_{l=1}^L a_{qkl}X_k(\xi)T_l(t-t_k) ~dt~d\xi \\
&=\sum_{k=1}^K \sum_{l=1}^L a_{qkl} \Delta \xi_1 \Delta \xi_2 \iff a_{qkl} ~ \sim \overline{D} \\
\end{aligned}
$$
appendices
Gaussian integral
$$
\begin{equation}
\begin{aligned}
\int_{-\infty}^\infty & \exp\left(-\frac 1 2 x^{T} A x \right) \, d^nx=\sqrt{\frac{(2\pi)^n}{\det A}} \\
\int_{-\infty}^\infty & \sqrt{\frac{\det A}{(2\pi)^n}}~\exp\left(-\frac 1 2 x^{T} A x \right) \, d^nx=1
\end{aligned}
\end{equation}
$$
Multivariate normal distribution
$$
\begin{equation}
f_{\mathbf x}(x_1,\ldots,x_k) = \frac{1}{\sqrt{(2\pi)^k|\mathbf{\Sigma}|}} \exp\left(-\frac{1}{2}({\mathbf x}-{\mathbf \mu})^T{\mathbf \Sigma}^{-1}({\mathbf x}-{\mathbf \mu}) \right)
\end{equation}
$$
Propagation of uncertainty
$$
\begin{equation}
\begin{aligned}
\Sigma^{\mathbf{f=Ax}} &= \mathbf{A} \Sigma^x \mathbf{A}^\mathbf{T} \\
\operatorname{cov}(\mathbf{X}_1 + \mathbf{X}_2,\mathbf{Y}) &= \operatorname{cov}(\mathbf{X}_1,\mathbf{Y}) + \operatorname{cov}(\mathbf{X}_2, \mathbf{Y})\\
\end{aligned}
\end{equation}
$$
Properties of the determinant
$$
\begin{equation}
\begin{aligned}
\det(A^{-1}) & = \frac{1}{\det(A)}=\det(A)^{-1} \\
\det(AB) & = \det(A)\det(B) \quad A,B:~square~~matrices \\
\det(cA) & = c^{n}\det(A) \quad\qquad A:~n \times n~matrix \\
\det \begin{pmatrix}A& 0 \\ C& D\end{pmatrix} &= \det\begin{pmatrix}A& B\\ 0& D\end{pmatrix} = \det(A) \det(D)
\end{aligned}
\end{equation}
$$
Block diagonal matrices
$$
\mathbf{A} = \begin{bmatrix}
\mathbf{A}_{1} & 0 & \cdots & 0 \\ 0 & \mathbf{A}_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \mathbf{A}_{n}
\end{bmatrix}
$$
$$
\begin{equation}
\begin{aligned}
\operatorname{det} \mathbf{A} &= \operatorname{det} \mathbf{A}_1 \times \ldots \times \operatorname{det} \mathbf{A}_n, \\
\operatorname{tr} \mathbf{A} &= \operatorname{tr} \mathbf{A}_1 +\cdots +\operatorname{tr} \mathbf{A}_n.
\end{aligned}
\end{equation}
$$
$$
\begin{equation}
\begin{pmatrix}
\mathbf{A}_{1} & 0 & \cdots & 0 \\
0 & \mathbf{A}_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \mathbf{A}_{n}
\end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{A}_{1}^{-1} & 0 & \cdots & 0 \\
0 & \mathbf{A}_{2}^{-1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \mathbf{A}_{n}^{-1}
\end{pmatrix}.
\end{equation}
$$
Direct sum
$$
\mathbf{A} \oplus \mathbf{B} =
\begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{B} \end{bmatrix} =
\begin{bmatrix}
a_{11} & \cdots & a_{1n} & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{mn} & 0 & \cdots & 0 \\
0 & \cdots & 0 & b_{11} & \cdots & b_{1q} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & b_{p1} & \cdots & b_{pq}
\end{bmatrix} \\
\bigoplus_{i=1}^{n} \mathbf{A}_{i} = {\rm diag}( \mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3 \cdots \mathbf{A}_n)=
\begin{bmatrix}
\mathbf{A}_1 & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_2 & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{A}_n \\
\end{bmatrix}\,\!
$$